A Guide to Creating Compact Syntaxes in AGDD
Author: Jeffrey Giansiracusa

August 15, 2001

Abstract

The purpose of this document is to lead the reader in a step-by-step manner through the process of implementing Compact syntaxes in AGDD for the description of components of the Muon Spectrometer. Emphasis is placed on the translation of existing AMDB descriptions into this form. Details are given for building the DTD syntax definition file, the XML description file, and the C++ class, including expand method. A basic knowledge of XML and DTD syntax, and of C++ programming, is assumed.

1. Introduction

The Compact mechanism is an addition to the AGDD language which allows detector descriptions to be written in a high-level structured form so that they are easily maintainable and human-readable. The principle philosophy behind this mechanism is the idea that the geometry should be specified by a minimal set of parameters, and that structural symmetries and repetitions should be exploited to reduce the description length wherever possible. Most applications however, require a low-level explicit geometric description of the geometry, in terms of geometric primitives, as is provided by the standard AGDD syntax. Therefore, the complete description must include a recipe for the translation of the high-level description to a low-level description.

This scheme results in a separation of the description information into two distinct areas. The high-level description is realized in XML—each object is specified by the attributes of a custom child element of a compact element. The recipe for translating from this form into standard AGDD—for expanding the XML—is realized as a method of a C++ object. There is a one-to-one correspondence between the defined custom elements and the classes. For each object there is a custom element, and a class that accesses the attributes of that element through the XML parser interface, and contains an expand method.

2. Getting Started—Installation and Setup

To begin creating geometry descriptions, you must first install some necessary software. Since this guide focuses on building descriptions for the Muon Spectrometer system, you will need to checkout the MuonAGDD source tree so that you may add your code to it. You will also need the AGDD package to compile the programs of the MuonAGDD system . As MuonAGDD package works within Athena framework you also need the TestRelease package . The visualization program Persint is useful in the process of writing geometry descriptions. It can read and display both AMDB and expanded AGDD files. The ability to view AMDB objects superimposed with AGDD objects is invaluable when converting descriptions from the former to the later format.

2.1 Checking Out the AGDD and MuonAGDD Packages With CMT

The Code Management Tool (CMT) allows one to download source trees from the ATLAS software repository and install them locally. We will need the TestRelease package, the MuonAGDD package and the AGDD package. First create a development directory—e.g. ‘work/’. To check out the packages , after setting up CMT, move into that directory and type:

 cmt co TestRelease

cmt co MuonSpectrometer/MuonAGDD

cmt co DetectorDescription/AGDD
2.2 Compiling the MuonAGDD Package

You will need to build the MuonAGDD package to integrate the C++ for the compact objects which you will write into system. The AGDD package must be installed only because its header files are needed to compile code which makes use of AGDD objects, so you will not need to compile it for any reason within the scope of this document.

To build the MuonAGDD package, first move into the TestRelease/cmt subdirectory of the source tree and specify in the requirements file the packages you are using by adding the lines:

 use MuonAGDD MuonAGDD-* MuonSpectrometer

 use AGDD AGDD-* DetectorDescription

and the packages needed for the TestRelease package to run MuonAGDD joboptions file:

 use Control Control-*

 All of the following commands must be executed in TestRelease/cmt directory. Whenever the requirements file is modified (the use of this file will be explained later), you must create and execute the setup scripts before you may compile. Do this by typing:

source setup.sh

(in zsh)

cmt broadcast cmt config

After running the above commands, to compile the package and build the library simply invoke:

cmt broadcast gmake

The code should compile successfully and in the subdirectory TestRelease/run should appear the Athena joboptions file TestMuonAGDD_joboptions.txt , edit this script setting the variable MuonAGDD_test.Inputfile to a Compact AGDD XML file

and specify in MuonAGDD_test.Outputfile the name you want for the corresponding Expanded AGDD version of that file (specify the entire path).

Now you can expand your Compact AGDD XML file by typing in TestRelease/run

 athena TestMuonAGDD_joboptions.txt

this will create the Expanded AGDD in the directory specified in MuonAGDD_test.Outputfile variable.

2.3 Running Persint

Persint is available through AFS at CERN in the software repository at:

/afs/cern.ch/atlas/offline/external/Persint

At the time of writing, v2.05 is the most recent version. To install, create a symlink to the file at: /afs/cern/afs/cern.ch/atlas/offline/external/Persint/Persint.2.05/bin/Linux/ persint.exe

Persint may be used to view AMDB files and expanded AGDD files, however it cannot (at the time of writing this) view compact AGDD. A brief list of useful commands is given here--see the Persint Manuel further details. Persint begins in Navigator mode—it accepts input through the Nav panel rather than the command window. To return to command mode, click on the END button.

In the command window, one can load AMDB and expanded AGDD XML files with the commands:

amdb foo.amdb

xml read foo.xml

To return to Nav mode, use:

nav

From navigator mode the current XML and AMDB file can be reloaded by clicking on the small button beside the AMD and XML buttons respectively. This is useful when modifying the file as it allows one to quickly view changes.

3. Creating a Compact Object

The process of building a Compact description is naturally divided into three sequential steps: Firstly, one should design the syntax. It is important to analyze the design in a thorough manner, because a small modification here propagates to a large modification in the code that must be written. Secondly, one must write the DTD to define this syntax. Lastly, one must write the C++ class(es) corresponding to the object being described. For reasons of pedagogy, the first step will be discussed last, as it is most illuminating to explore the details of design issues only after one is familiar with the framework for the design.

The organization of the various files of the Muon AGDD description is as follows:

· The Compact XML files and DTDs are to be placed in the data/Compact subdirectory.

· C++ class files should reside in the src subdirectory.

· The association header files are to be placed in the MuonAGDD subdirectory.

The following sections will guide you through the steps to create the above structure for an example geometry. We will take as our example a box with a hole in it. The description we will use may seem unnecessarily complex, but it will allow for the demonstration of all necessary techniques, while still remaining simple enough to be a short exercise. Our description will take this object to be decomposed into a definition of the box, and a definition of the hole. Since the physical box contains a hole, the description of the box will reflect this simple hierarchy by containing a reference to the description of the hole. The parameters of the box are length, width, and height. The hole has a radius as its only parameter. For brevity, we will choose the abbreviation BWH to stand for the full box-with-hole object.

3.1 Writing the DTD

Now that the design of the box-with-hole object description has been specified, the next step is to express this structure as an XML syntax definition. It is entirely straightforward to write a DTD to do this. Create a file with the name:

data/Compact/AGDD_BoxWithHole.dtd
The full contents are shown below, followed by an explanation of each part.

<?xml version="1.0" encoding="iso-8859-1"?>

<!ENTITY % BoxWithHole_elements 'BWH_Box | BWH_Hole' >

<!ELEMENT BWH_Box EMPTY >

<!ATTLIST BWH_Box

 Length CDATA #REQUIRED

 Width CDATA #REQUIRED

 Height CDATA #REQUIRED

 Hole_Description IDREF #REQUIRED

 %units;>

<!ELEMENT BWH_Hole EMPTY >

<!ATTLIST BWH_Hole

 Radius CDATA #REQUIRED

 %units;>

The first line tells the parser which version of XML is being used. The next line defines each of the custom tags we will use as an entity—an alias so that these tags can be referred to in a generic way in the AGDD_Compact.dtd file where the list of possible child elements of the compact element are specified (we will have to add our elements to the list shortly). The name of each of the elements we define must be listed here, separated by the ‘|’ vertical bar character.

Following the entity definition are the definitions of the custom elements themselves. In this case there are two elements to define: the box, and the hole. The line,

<!ELEMENT BWH_Box EMPTY >

creates the element BWH_Box and specifies that it must have no child elements—that is, it must be empty. There is presently no facility in AGDD for accessing the information of the child elements of custom elements, so it will always be the case that the elements we define for compact descriptions will have no children. Hierarchical relationships are instead represented with the IDREF feature of XML. To keep the namespace clean, each element we define should begin with the abbreviation for the system of which it is a component; e.g. MDT_xxx for muon chambers, RPC_xxx for resistive plate chambers, and BWH_xxx for our box-with-hole example system.

In addition to specifying the elements we will use, we must specify the attributes of each element. This is accomplished with the <!ATTLIST> statement—allowed attributes are listed and for each attribute the data type and whether it is required or optional is stated. For out purposes we will use only two datatypes: CDATA for numerical data, and IDREF for a reference to a subcomponent (such as the hole of the box). We could also give an explicit list of values which the attribute is allowed to take. For example, a Boolean attribute is defined with:

Height (true | false) #REQUIRED
In some situations it may be advantageous to declare some attributes as #IMPLIED rather than #REQUIRED, such as when a good value will be assumed if none is specified explicitly in the XML.

On the final line of each attribute list, the ‘%units’ is an example of the use of entities. This statement includes the units attributes, which are defined in the file AGDD_base.dtd (Note: this file contains the definitions for the standard AGDD syntax—it can be used as a reference for the syntax of the geometric primitives which we will use when expanding our compact object, and the first half of the file contains documentation for the AGDD language). The units entity contains two implied attributes: ​unit_length and unit_angle, which can take values of {m, cm, mm}, and {rad, deg} respectively.

This completes the syntax definition for our simple box-with-hole object, but it must be included in the AGDD_Compact.dtd, and our elements must be added to the list of allowed children of a compact element, before our syntax can be used. First, include our DTD by adding the lines,

<!ENTITY % BoxWithHole SYSTEM "AGDD_BoxWithHole.dtd">

%BoxWithHole;

to the section at the beginning of the AGDD_Compact.dtd file. Just below this section is the declaration of the compact element—add the two elements we have defined to the child list here.

3.2 Writing the compact XML File

With our syntax already defined, all we must do here is fill in some structure required by AGDD and fill in our syntax with some numeric data. An example is given below—BWH_compact.xml.

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?>

<!DOCTYPE AGDD SYSTEM "AGDD.dtd" [

 <!ENTITY Material SYSTEM "Material_AGDD.xml">

]>

<AGDD DTD_version="v4">

 <!-- Material definitions -->

 &Material;

 <!-- Section definition -->

 <section name = "BoxWithHole"

 version = "1.0"

 date = "August 14th, 2001"

 author = "J. Giansiracusa"

 top_volume = "ATLAS"

 DTD_version = "v4">

 <!—- Box with Hole definition -->

 <compact name="BWH_HOLE">

 <BWH_Hole Radius="25.0" unit_length="mm" />

 </compact>

 <compact name="BWH">

 <BWH_Box Length="100.0" Width="200.0" Height="300.0"

 unit_length="mm" Hole_Description="BWH_HOLE" />

 </compact>

 <composition name="ATLAS">

 <posXYZ volume="BWH" X_Y_Z="0 0 0" rot="0 0 0"/>

 </composition>

 </section>

</AGDD>

The first four lines are bookkeeping. Next is the open tag for the AGDD element, which is the envelope for the details of our description. The AGDD element is allowed to contain material definitions and section elements as children. The materials for each component of the ATLAS system are defined in files which are included by Material_AGDD.xml. For details, see the documentation in AGDD_base.dtd. A schematic representation of the structure of our file is given below.

Each section corresponds to one subcomponent of ATLAS—for instance, the Barrel Outer Muon Chambers form a section, and the Endcap Muon Chambers form a second section, and the Barrel Toroid magnets form a third section. The section element may contain compact elements as well as AGDD primitives and compositions. There must be a composition element to place our object into ATLAS, or else it will exist only in limbo.

Each compact element has a required name attribute with a unique value, and an option envelope attribute of type IDREF (omitted in the example considered in this document). For the time being, we won’t concern ourselves with envelopes. Each compact element must have exactly one child of one of the types allowed in AGDD_Compact.dtd. Objects which are referenced should precede the objects which reference them. When using IDREFs to refer to compact objects, such as with the Hole_Description attribute, the value of the attribute should match the value of the name attribute of the compact element which contains as a child the object being referred to (note that XML is case sensitive).

After the compact objects is the composition to place our object into ATLAS. A composition element may contain any number of positioners—a positioner is an element of one of several types, including posXYZ, posRPhiZ, and several multipositioners. See the AGDD documentation or AGDD_base.dtd for details. A volume is a generic label for any type of object which can be positioned. Things which are volumes include: geometric primitives such as a box or tube, compact objects, and other compositions. Each positioner element contains an IDREF to a volume and one or more attributes describing the position and orientation, relative to the local coordinate system of the composite volume being define, at which to place referenced volume. A multipositioner, rather than specifying a single position, specifies a set of positions so that a single volume can be duplicated in a regular fashion. This is the principle facility for exploiting symmetry and repetition in the structure.
3.3 Validating the XML

Now that the XML description is written, it remains to validate it—that is, to check the XML code for consistency against the DTD syntax definition. To do this, simply type:

SAXCount BWH_compact.xml

The SAXCount program will parse and check the specified file. If there are no errors then we are ready to proceed with writing the C++ code to accompany what we have done so far.

 It is also possible to validate the XML file from emacs editor.

3.4 Building the C++ object

When the XML is read by the AGDD reader a data structure is constructed in memory to reflect the structure of the file. Each element corresponds to an instance of an object of the same name. Each attribute corresponds to a data member of that object. IDREFs are translated into pointers to the referenced object. It is our responsibility to write the classes for the compact elements we have created.

Each class will have several responsibilities. It must provide a method named get_attributes to retrieve and store the values of the XML attributes into the object’s data members, and it must provide methods to return each of these data members. It should also prived methods to return commonly used derived properties. In our example, the hole object is specified by a radius, but it should also provide methods to return the circumference and diameter.

Additionally, the class must have an expand method. For physical objects, such as our box, the expand method will contain the code to translate the information in the attributes into a list of AGDD primitives and compositions. However, not all objects are physical. For instance, the hole in our example has no physical existence apart the box. It is impossible to build only a hole (this is not entirely true since we will actually construct the box-with-hole by subtracting a tube from a box), and therefore it makes no sense to expand just the hole by itself. As a more common case, an object may be non-physical because it requires information held by the object which has a reference to it before it can be physically realized—e.g. if we were to add a cap to our hole (so that the hole object has a Cap_Description IDREF attribute), and specify the cap only by a thickness, leaving it implicit that the cap will have the same radius as the hole, then the cap cannot be built without knowledge of the hole’s attributes. Thus the cap itself is also a non-physical object.

The resolution of this is to have one object act as a factory. If the design structure has a simple tree structure then the root object should provide the factory services, because the root object is the only one with access to the attributes of all other objects. The factory will have a method to expand each which is object below it in the hierarchy, and its own expand method will call these other expanders and thus build the entire tree at once.

We’ll go over the BWH_Box header file first:

#ifndef MUONAGDD_BWH_BOX_H

#define MUONAGDD_BWH_BOX_H

// Includes

#include "AGDD/AGDD_Defs.h"

#include <string>

// Forward Class Declarations

class AGDD_Compact;

class AGDD_Composition;

class BWH_Hole;

class BWH_Box : public AGDD_Compact

{

public:

 // Constructor

 BWH_Box();

 // Destructor

 ~BWH_Box();

 // Retrieve description from attributes

 void get_attributes();

 // Access to the attributes

 double Length() const;

 double Width() const;

 double Height() const;

 BWH_Hole* Hole_Description() const;

 std::string unit_length() const;

 // Expand to primative AGDD (inherited method)

 void expand();

 // Expand the children

void expandHole();

private:

 // Data members

 double m_length;

 double m_width;

 double m_height;

 BWH_Hole* m_hole_description;

 std::string m_unit_length;

};

#endif // MUONAGDD_BWH_BOX_H

The header file will need to include the AGDD/AGDD_defs.h header. The class must have the same name (including capitalization) as the XML element to which is corresponds, because the AGDD factory builds the data structure by matching class names with element names. The class is derived from the AGDD_Compact object which has a virtual expand method, so we must supply the method in our class. Also, since this object is the root of the description tree it will act as the factory to build the hole, and for this we declare the method expandHole.

In the usual C++ style, data members are made private to force the client to access them only through the interface methods. The naming convention adopted here is that the private data member names should begin with ‘m_’ and be entirely lower case, while the associated interface methods should have the first letter of each work capitalized. In addition to the data members listed, the object inherits a m_name member from its AGDD_Compact base class. Two access methods are also inherited: setName(std::string) and getName()—they set and return, respectively, the value of m_name. The base class is responsible for setting the name of our compact object to the value of the name attribute of the compact element which contains our element as a child. Therefore we will only use setName when we are creating new volumes in the expand method.

We will now discuss the source file for the BWH_Box class: BWH_Box.cxx. Here we must include our header as well as a couple of AGDD headers and C++ standard library headers:

#include "MuonAGDD/BWH_Box.h"
#include "AGDD/AGDD_CompactFactory.h"
#include "AGDD/AGDD_Factory.h"
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
Immediately following the header inclusions we must register this class with the AGDD system. This is done with the line,

REGISTER_FACTORY(BWH_Box);

After the above code we are ready to begin writing the methods of the class. The constructor will initialize the data members to default initial values (usually zeros for numerical data), and the destructor need not do anything:

//Constructor

BWH_Box::BWH_Box()

:

m_length(0),

m_width(0),

m_height(0),

m_hole_description(0),

m_unit_length("mm")

{}

//Destructor

BWH_Box::~BWH_Box()

{}

The interface for accessing the private data members is trivial, however the get_attributes method requires some explanation. This method is responsible for querying the AGDD system for the values of XML attributes of this object and placing those values into the data members. We’ll begin by looking at the code:

Void BWH_Box::get_attributes()

{

AGDD* agdd;

agdd =AGDD_Factory::Xerces_instance().get_detector_description();

m_length = getDoubleAttValue("Length");

m_width = getDoubleAttValue("Width");

m_height = getDoubleAttValue("Height");

m_hole_description = dynamic_cast<BWH_Hole*>

(getCompactAttValue("Hole_Description",agdd));

m_unit_length = getAttValue("unit_length");
}
The first two lines are AGDD bureaucracy. Next, for each data member the method queries the XML parser and requests the value the corresponding attribute. The name of the attribute is passed as a string to the query method. There is a separate query for each data of several data types.

· Floating point data is returned with getDoubleAttValue.

· Integer data is returned with getIntAttValue.

· String data is returned with getAttValue (although this method may be changed in the near future to getStringAttValue for consistency).

For both of these query methods, the only argument needed is a string containing the name of the attribute. However, for IDREF-type attributes we must also pass the agdd pointer that was declared in the first two lines. There are two query methods for IDREFs:

· References to volumes which are compact objects must use getCompactAttValue.

· References to regular volumes (any AGDD volume other than compact) must use getVolumeAttValue.

At this point, the only work remaining to be done in writing this BWH_Box object is to write the expand and expandHole methods. For this it will often be helpful to look at the AGDD headers as for reference. Let us take a look at the code for this and then discuss it line-by-line.

void BWH_Box::expand()

{

//Expand the child

expandHole();

// Build the Box

AGDD_Box* theBox = new AGDD_Box;

m_expandedVolumes.push_back(theBox);

theBox->setName("BWH_box_no_hole");

theBox->m_X = Length();

theBox->m_Y = Width();

theBox->m_Z = Height();

theBox->m_material_name = "Aluminum";

// Put it all together

AGDD_PosXYZ* BoxPos = new AGDD_PosXYZ;

theBWH->m_positions.push_back(BoxPos);

BoxPos->m_volume_name = theBox->getName();

BoxPos->m_X_Y_Z[0] = 0;

BoxPos->m_X_Y_Z[1] = 0;

BoxPos->m_X_Y_Z[2] = 0;

BoxPos->m_rot[0] = 0;

BoxPos->m_rot[1] = 0;

BoxPos->m_rot[2] = 0;

AGDD_PosXYZ* HolePos = new AGDD_PosXYZ;

theBWH->m_positions.push_back(HolePos);

HolePos->m_volume_name = Hole_Description()->getName();

HolePos->m_X_Y_Z[0] = 0;

HolePos->m_X_Y_Z[1] = 0;

HolePos->m_X_Y_Z[2] = 0;

HolePos->m_rot[0] = 0;

HolePos->m_rot[1] = 0;

HolePos->m_rot[2] = 0;

AGDD_Subtraction* theBWH = new AGDD_Subtraction;

m_expandedVolumes.push_back(theBWH);

theBWH->setName(getName());

theBWH->m_positions.push_back(BoxPos);

theBWH->m_positions.push_back(HolePos);

}

The code in the expand method is composed of three categories of code:

1. Creating expanded primitive volumes—e.g. boxes, tubes, trapezoids.

2. Defining positioners for the expanded volumes.

3. Creating composite volumes (composition, subtraction, or union) as a collection of positioners.

Expanding the children in a separate method is simply an attempt to modularize the code, and each of the child-expanding methods will follow the composition outlined above.

void BWH_Box::expandHole()

{

AGDD_Tube* theHole = new AGDD_Tube;

m_expandedVolumes->push_back

theHole->setName(Hole_Description()->getName());

theHole->m_inner_radius = 0;

theHole->m_outer_radius = Hole_Description()->Radius();

theHole->m_material_name = "Aluminum"

theHole->m_total_length = Length();

}

Each volume created must be attached to the data structure by pushing it onto the m_expandedVolumes vector data member which is inherited from the AGDD_Compact base class. When translating the compact XML into an expanded XML file, each compact element will be commented out and replaced with all the volumes of its expanded volumes vector. In addition to adding it to the vector, we must also fill in the required attributes of each volume. To do this is trivial, but it will require reference to the AGDD_defs.h header.

To define a positioner (of the simpler variety—a single positioner) we must specify a position and orientation relative to the local coordinate system of the composite volume that will use this positioner. Specifying the position is self-explanatory. Specifying orientation requires a choice of convention—an orientation is described by three rotation angles (given in degrees by default) about the X, Y, and Z axes. The rotations applied in that order. The volume attribute of the positioner specifies the name of the volume to be positioned.

Creating a composite volume involves simply listing several positioners by pushing them to the m_positions vector of the composite volume object. For subtractions and unions, all materials must be the same. In a subtraction, all volumes listed second of later are subtracted from the first.

Writing the code for the BWH_Hole class is significantly simpler because the expand method of that class is only a dummy procedure, with no contents. It should be easy to write the files BWH_Hole.h and BWH_Hole.cxx after reading the explanations of this and the preceding sections.

3.5 Compiling and Expanding with the Test_Compact Program

Now that the code is written, add your files to the cmt/requirements file so that the compiler will know to compile the code we have created along with the other code of the MuonAGDD package. Edit this file and add your .cxx files to the list.

Include the corresponding header files in MuonAGDD_test.cxx, move in the directory MuonAGDD/share and set input and output files for MuonAGDD_test algorithm in TestMuonAGDD_joboptions.txt file (conventionally you should put Compact XML files in the MuonAGDD/data/Compact directory and the corresponding expanded versions in the MuonAGDD/data/Expanded directory).Then move in TestRelease/cmt directory and ,after setting up cmt enviroment by means of the command
source setup.sh

(in zsh),

compile by typing

 cmt broadcast gmake

This will also copy TestMuonAGDD_joboptions.txt in the TestRelease/run directory, move there and run

athena TestMuonAGDD_joboptions.txt.

and your Compact XML file will be expanded and written out as you have specified in MuonAGDD_test.Outputfile . This file is in the format that can be displaced with the XML viewing feature of Persint—you may have to modify a few lines from the beginning of the expanded XML file before Persint will be able to read it. Delete the first two entity definitions (these use URLs, which are currently not yet implemented). Now run Persint and view it as described earlier.

Some Design Issues

It is always preferable to choose a description with a simple tree structure whenever possible. Complex structures where elements are tangled together by a web of IDREFS should be avoided because one of the main purposes of Compact AGDD is to make explicit the hierarchical structure of the geometry. In the process of expanding the geometry, information will travel from the leaves of the tree to the factory at the root. With this design model the factory has access to all of the attributes of the description tree and thus there is no need for bi-directional references or other confusing more complex structures.

There is no absolute rule for when to divide an object into subcomponents, and often it is an arbitrary choice. For instance, in our example we could just as well have made only a single compact element with the attributes Length, Width, Height, and Hole_Radius. The primary reason one would subdivide is when a component appears in many places, or many times each with a small variation in parameters. If our box were to have several holes, each with a different radius, then our choice so divide the description into two compact elements would have been clearly motivated. When in doubt, it can be useful to examine the descriptions of other components. One should always try to maintain consistency of style across all descriptions.

 AGDD

 section

 materials

 compact

 compact

