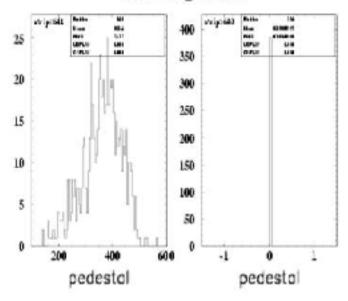


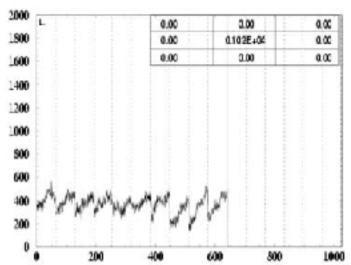
Production and Integration Status

Hybrids production status:

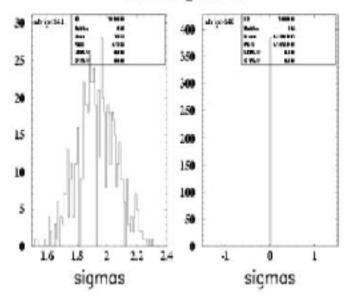
The first S-hybrid 2024-6-001 has been produced in Geneva

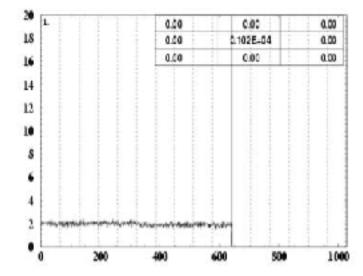
Only PCB and VAs have been bonded in order to perform an electrical test before gluing the Capacitors and then check the production method....




AMS-02 Tracker Meeting

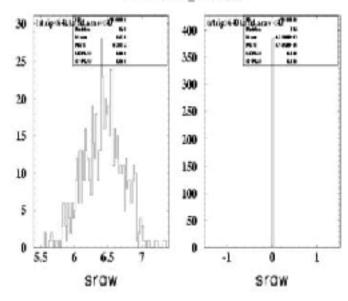
Perugia - April 7th-8th, 2004

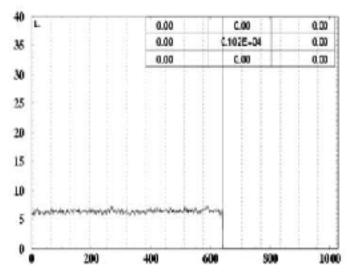




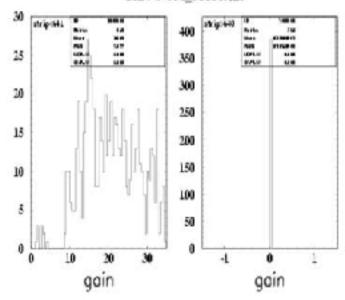
2024-6-001_00030.cal

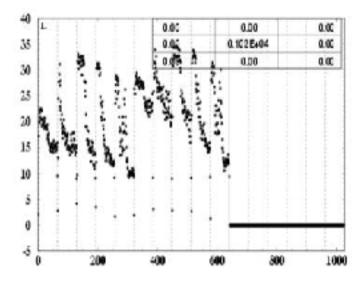
University of Geneva




AMS-02 Tracker Meeting

Perugia - April 7th-8th, 2004





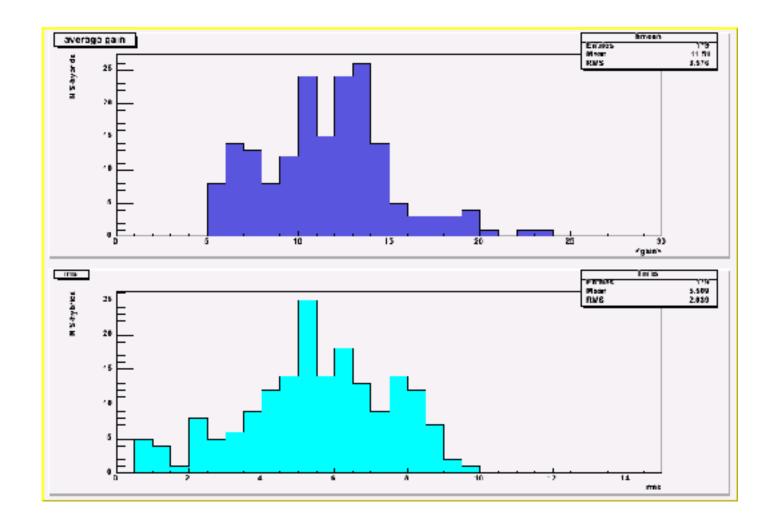
2024-6-001_00030.cal

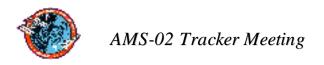
University of Geneva

..the test is pretty good:

$$<$$
pedestal $>$ = 362.4 rms = 72.17

$$\langle sigmas \rangle = 1.933$$
 rms = 0.1322


$$\langle sraw \rangle = 6.430$$
 $rms = 0.2934$


$$\langle gain \rangle = 20.69$$
 rms = 7.077

That's top ten!!!

A little statistics on S-hybrids Gain:

Work is in progress:

Other three S-hybrids have been produced*:

2024-6-002

2024-6-003

2024-6-004

* VA s and Capacitors glued to PCB, bonding will be performed in Perugia

Ladders assembly and Planes Integration Status

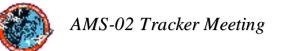

SHELDED	READY TO BE SHIELDED	ON PHASE-1	ON REFARATION	STAND-BY	SPARES
LIPAJON (L1) (10,m) LIPAJON (L1) LIPAJON (L1) LIPAJON (L1) LIPAJON (L1) LIPAJON (L1)	LOTPEOS (LT) (L40µm) LONADOS (LT) (L40µm) LUDADOS (LT) (L40µm) LULADOS (LT) (L40µm)	L13A0003 (M) M) L13A0003 (M) M) L13A0033 (M) L13AF100 (M) L13AF101 (M) L13A0033 (M) L13A0037 (M) L13AF099 (M) L13AF099 (M)	Lilakii (Ha)	LUARS (LFpm) LUARS (LFpm) LUARS (Fref)(He) LUARS (Fref)(He)	LIPARDO (Hk) (still problem LIPARDO (St. 2) LIPARDO (St. 2) LIPARDO (St. 2) LIPARDO (St. 2) LIPARDO (Hc. k) LIPARDO (H
ER (1-2+4)	14 (20+1)	H	2	1	£ (L+10

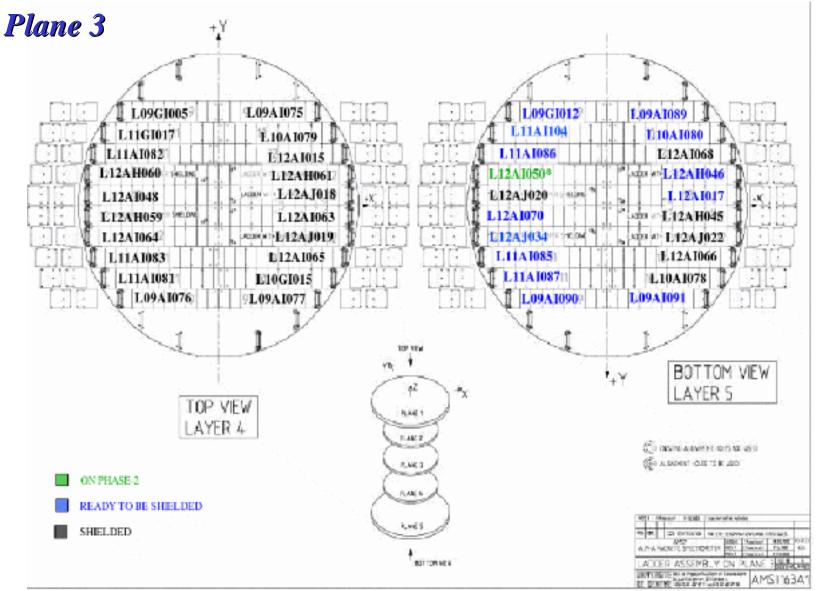
Ladders installed and tested on planes

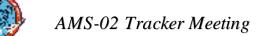
ON LAYER	ON LAYER	ON LAYER	ON LAYER	ON LAYER	ON CAYER	ON LAYER	ON LAYER
	L07P1002 (LF) L07P1004 (LF) L09G1003 (LF) L09G1006 (LF) L09G1010 (LF) L29G1013 (LF)		L09G2005 (£4) L09A1075 (£4) [70µm] L09A1076 (£4) [70µm] L09A1077 (£4) [70µm] L19G2015 (£4) L19A1079 (£4)		1,0	847	
	LioPtoo5 (LE) LioGlot4 (LE) LitGlot4 (LE) LitGlot8 (LE) LitGlot6 (LE) LitGlot6 (LE) LitAH024 (LE)		Lil GEOLF (L4) Lil AEOSI (L4) (TOpin) Lil AEOSI (L4) (140pm) Lil AEOSI (L4) (140pm) Lil AEOSI (L4) (70pm) Lil AEOSI (L4) (70pm) Lil AEOSI (L4) Lil AEOSI (L4)				
	L12AB029 (28) L12AB067 (28) L12AB063 (28) L12AB063 (28) L12AB064 (28) L12AB065 (28) L12AB065 (28) L12AB064 (28) L12AB074 (28)		L12A2015 (L4) L12A2048 (L4) L12A2048 (L4) L12A2041 (L4) L12A2065 (L4) L12A2048 (L4) L12A2048 (L4)				Englind A: E: also, prob th motodogy S: sensor prob.
	L11AIOSI (Le) L11AIOSI (Le) L11AIOSI (Le)						Hi hybrid prob- dy; available in FG TID: test beam
0/20	24/94	0.92	20/20	0/20	0.72	191	0(20

Layer L4

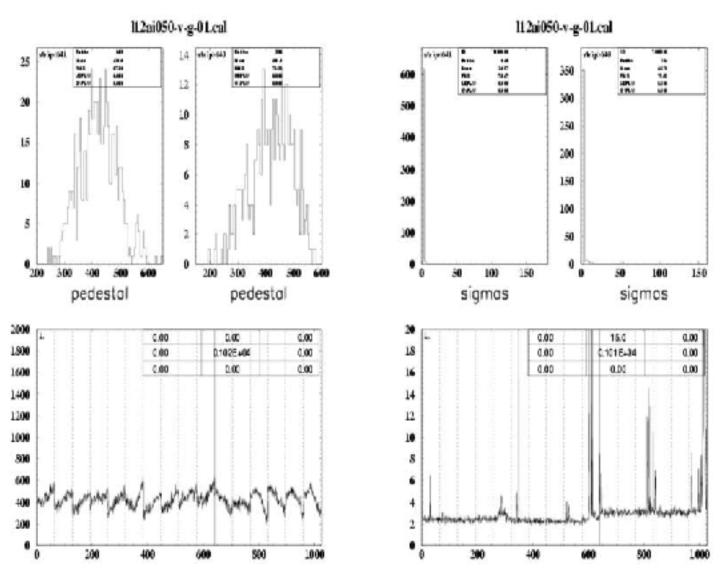
Mercedes Paniccia

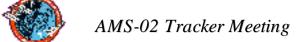

University of Geneva

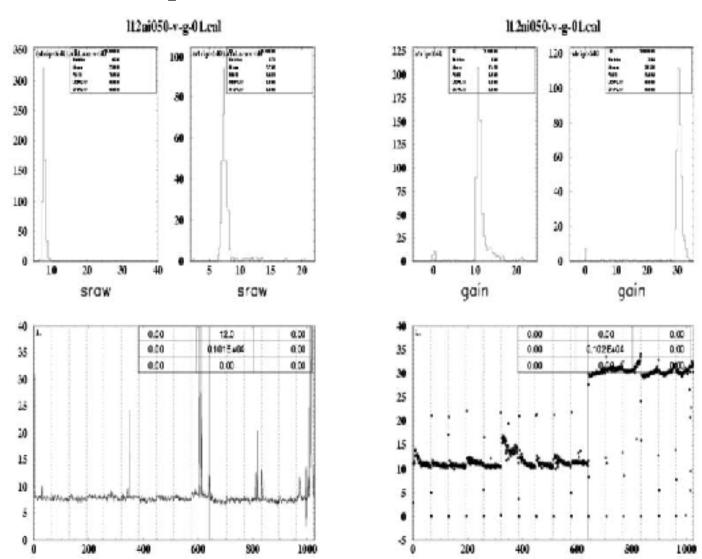


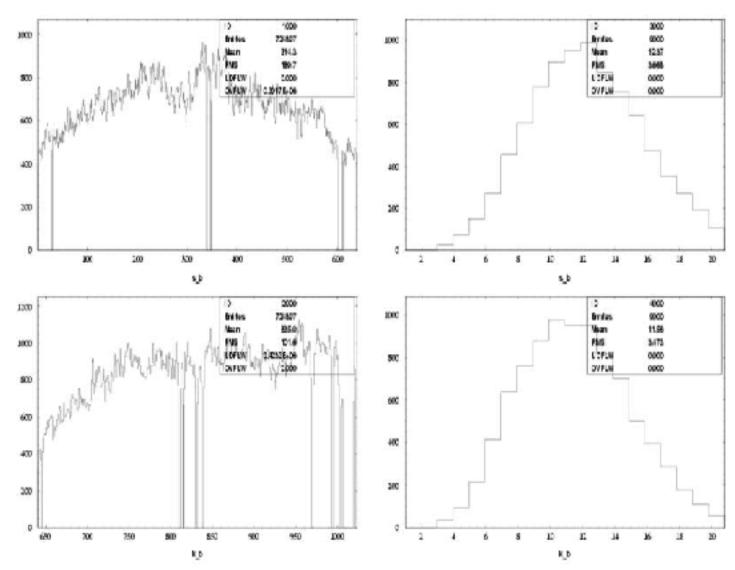

Plane 3 status summary:

- Top layer (L4) successfully tested
- Bottom layer (L5):
 - 6/20 ladders ready to be installed
 - 13/20 ready to be shielded
 - 1/20 still on phase-2






L12AI050 at reception in Geneva (1)


L12AI050 at reception in Geneva (2)

L12AI050 at reception in Geneva (3)

A deeper look into VA 16:

	STRIP	V	4 VACH	HA I	PEDESTAL	SRAW	SIGMAS	GAIN S	STATUS
		1000 1001 1002 1003 1004	16 16 16 16 16	40 41 42 43 44	455.45 412.77 401.17 449.47 442.23	7.71 7.92 7.85 7.95 11.8	3.09 3.59 3.02 3.19 7.95	30.38 30.79 30.93 30.46 29.83	0 0 0 0 8 8
		1005 1006 1007	16 16 16	45 46 47	396.43 402.09 369.26	11.28 8.05 8.09	8.32 3.63 3.59	30.65 30.94 31.17	8 0 0
		1008 1009 1010 1011	16 16 16 16	48 49 50 51	389.65 332.63 389.33 316.11	9.35 52.24 77.98 13.46	6.22 52.27 72.86 9.91	30.83 31.22 26.6 31.63	8 10 10 8
VERY NOISY -		1012 1013 1014 1015	16 16 16 16	52 53 54 55	324.04 326.91 393.07 312.26	17.48 54.61 135.02 83.19	14.14 58.34 141.05 52.51	31.34 30.38 20.8 5.41	8 10 26 138
REBONDED VERY NOISY -	$\stackrel{\mathrm{D}}{\longrightarrow}$	1016 1017 1018 1019	16 16 16 16	56 57 58 59	291.87 329.05 259.98 316.81	79.16 119.41 46.57 17.4	52.57 128.97 45.51 14.69	9.42 22.91 32.55 31.65	138 26 10 8
		1020 1021 1022	16 16 16	60 61 62	332.47 318.25 286.5	11.18 9.53 8.12	7.08 4.87 3.35	31.37 31.7 32.27	8 0 0
		1023 1024	16 16	63 64	335.02 311.23	8.8 13.79	3.28 10.78	31.94 30.41	0 8

There is an hole of 13 channels on K-side

What happen if we take out the most noisy channel (the 54th)?

After disconnecting channel 54 the problem was still there...

Let's try to take out also the other very noisy channel (the 57th) ...

After disconnecting channel 57 the problem was still there...

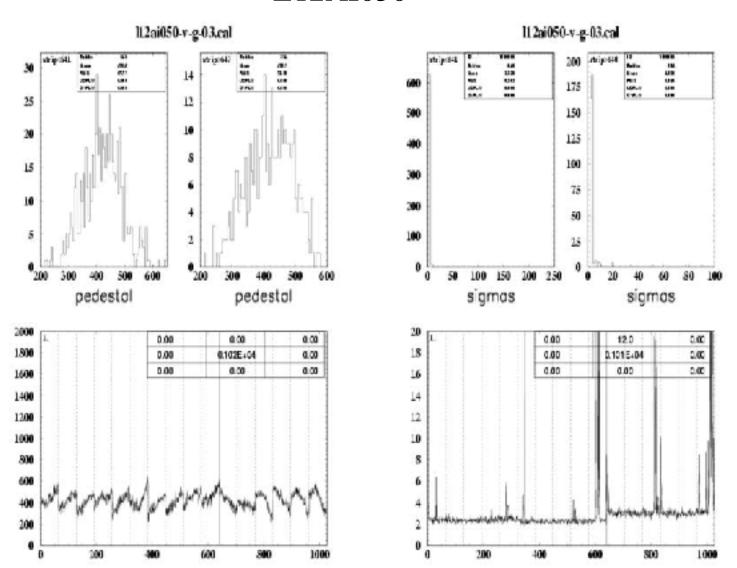
And if the cause is in the two rebonded channels (55th & 56th)?

The noise did not decrease but it just spread on the neighbour channels!

Then the problem is due to the silicon.

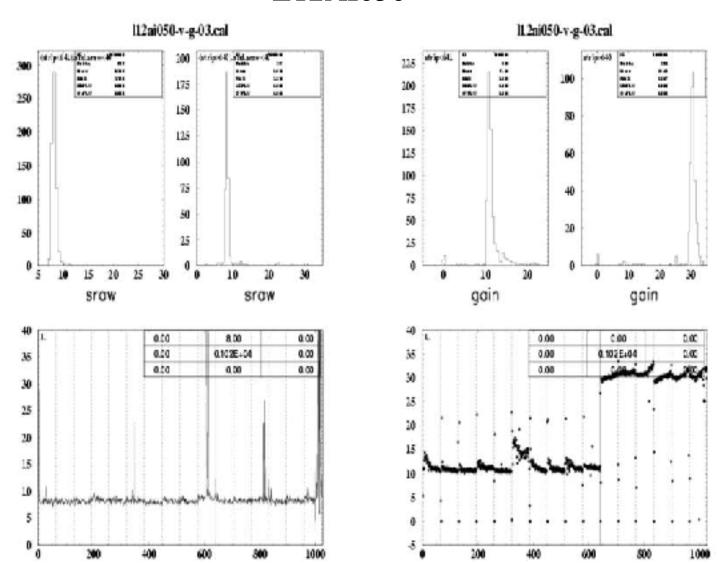
Can we use L12AI050 as it is?

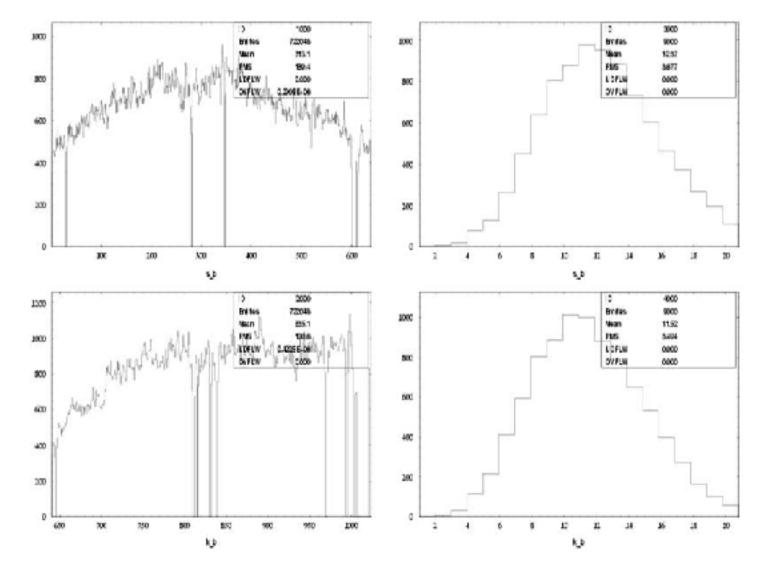
(Don't worry about L5: L12AI049 will replace it)


VA 16 now:

STI	RIP	VA	VACHA	PEDESTAL	SRAW	SIGMAS	GAIN	STATUS
	1000	16	40	454.75	8.61	2.77	30.4	0
	1001	16	41	412.54	8.56	3.11	30.82	0
	1002	16	42	402.16	8.56	2.91	31.17	0
	1003	16	43	449.47	8.52	3.09	30.7	0
	1004	16	44	443.66	11.33	9.76	30.17	8
	1005	16	45	396.74	11.76	9.61	31.25	8
	1006	16	46	403.54	8.8	3.48	30.99	0
	1007	16	47	371.14	8.87	3.95	31.56	0
	1008	16	48	392.46	9.07	5.43	31.03	8
	1009	16	49	336.24	30.5	33.34	31.79	10
	1010	16	50	386.16	42.26	51.02	29.6	10
	1011	16	51	320.46	12.05	9.1	31.92	8
	1012	16	52	331.01	22.97	20.67	31.8	8
	1013	16	53	335.05	91.87	90.51	28.38	10
	1014	16	54	397.94	5.84	6.33	25.19	8
DISCONNECTED	1015	16	55	315.27	5.73	6.61	25.25	8
DISCONNECTED	1016	16	56	313.34	6.15	6.83	25.34	8
	1017	16	57	343.21	6.41	6.88	25.05	8
	1018	16	58	268.3	79.97	77.26	32.24	10
	1019			326.45	22.59	19.04	31.79	8
	1020	16	60	341.07	12.63	8.76	31.44	8
	1021	16	61	326.9	10.38	6.54	31.67	8
	1022			293.31	8.83		32.2	0
	1023			340.98	9.67	3.19	31.83	0
	1024	16	64	315.37	13.04	9.96	29.88	8

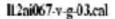
There is an hole of 14 channels on K-side!



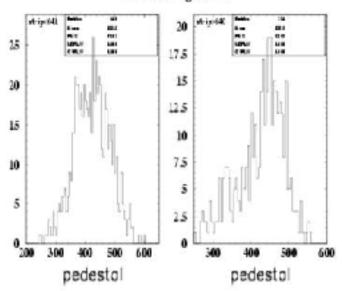


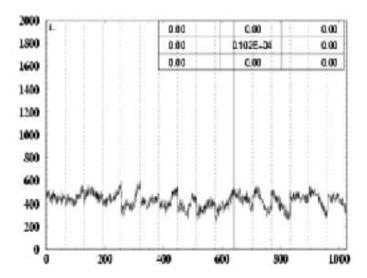
There are other two cases to be discussed:

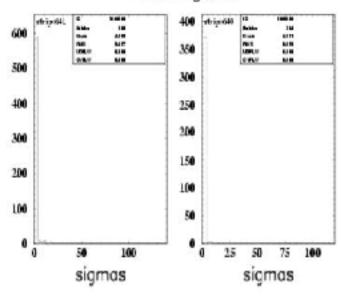
• L12AI067

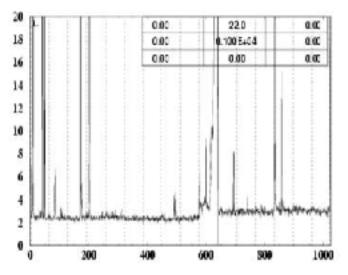

VA 10 (S-side) have high noise (in particular the last 25 channels).

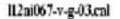
• L11AI088

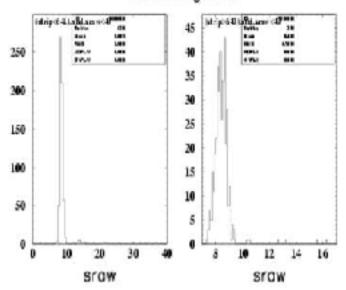

After phase-2 two peaks of noisy channels have appeared in K-side (VA 14 and 16). (L09AI089-like)

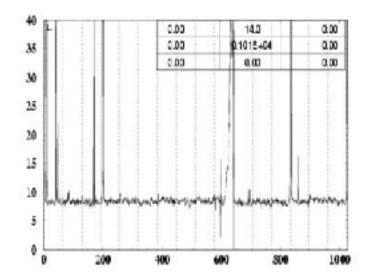

Perugia - April 7th-8th, 2004



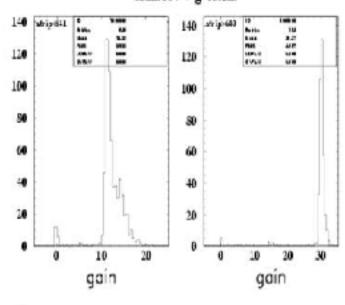

L12AI067

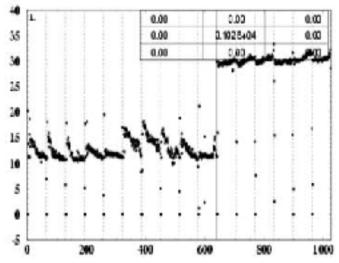

IL2ai067-v-g-03.cal

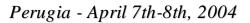


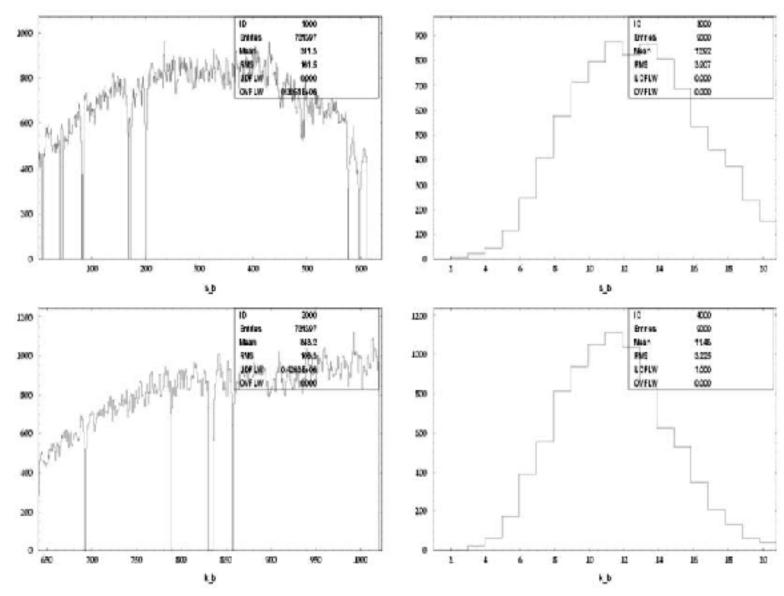


University of Geneva






112ai067-v-g-03.cal



University of Geneva

University of Geneva

18

The L09AI089 affair:

0.00

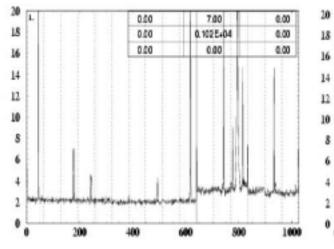
0.00

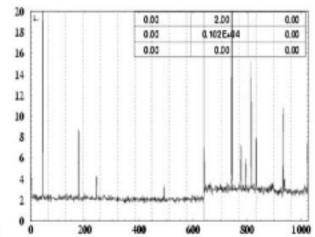
0.00

1.00

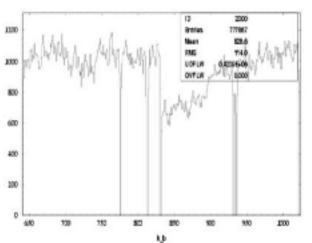
0.102E+04

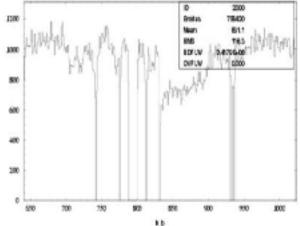
0.00

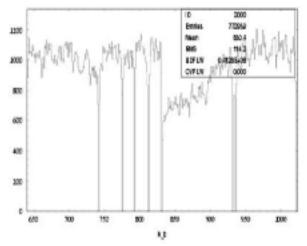

0.00


0.00

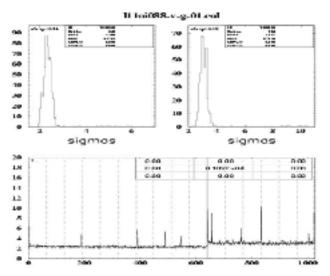
0.00


.. after disconnecting the most noisy channel..

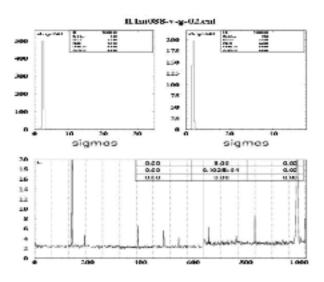




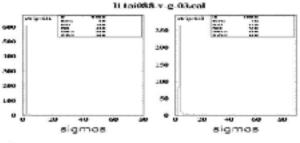
..a peak of 10 noisy channels appeared..


Mercedes Paniccia

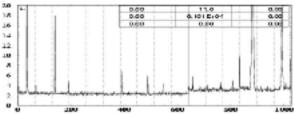
University of Geneva


L11AI088

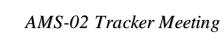
L11AI088 at reception in Geneva...

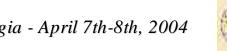


...after Phase-2 a peak of noise, about 10 channels broad has appeared on K-side ..

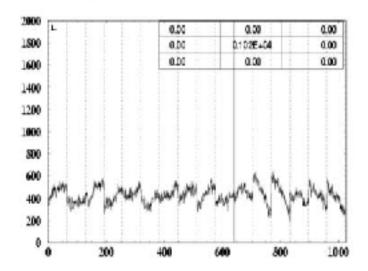


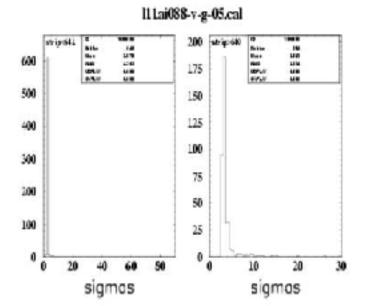
..we made an accurate visual inspection to the ladder, even taking it out from the box and putting it on the jig we use to glue legs, to have access to K-side.

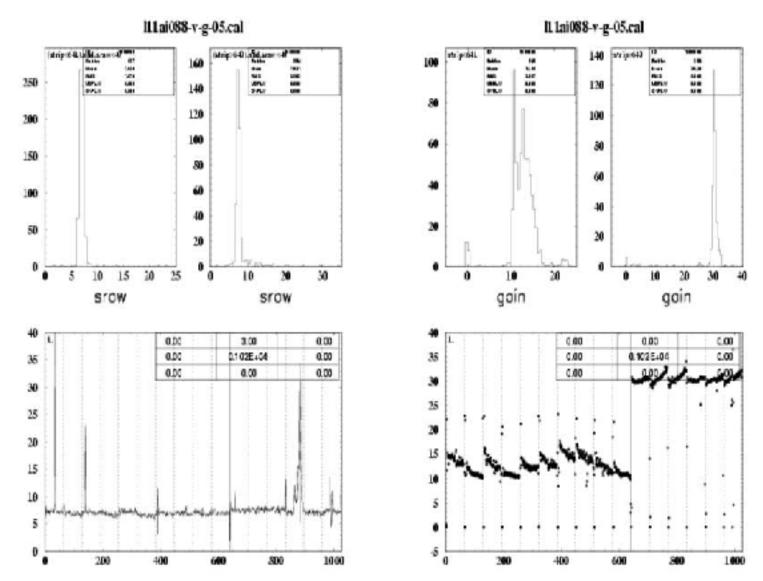

We did not find anything which could be related to these noisy channels, so we put the ladder back on his box and tested it again: another peak appeared on K-side!



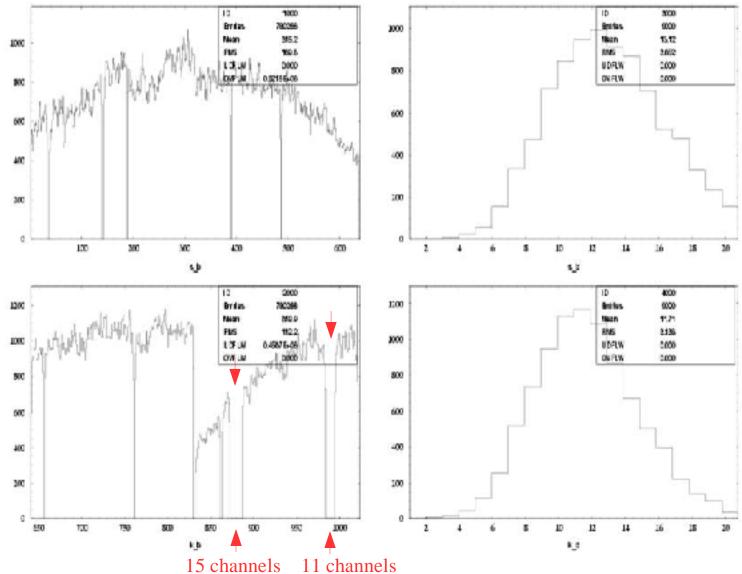
We tried to treat the problem as we did for L09AI089...

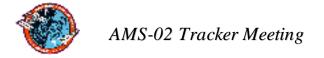

..it has not worked!





University of Geneva


L11AI088



Evolution of Integration flow will depend on:

- Good ladders already assembled
 - How many for each type are available in Perugia?
- Next Test Beam needs
 - 11 L09XIYYY + 6 others will be frozen until October 2004 (L3, L6 and L7 cannot be fully equipped until then)
- •Hybrids availability for ladders reparations
 - 8 S-hybrids needed to repair bad ladders located in Geneva

...you can find this presentation and other material concerning the AMS-02 Tracker Production and Integration status on my web page:

http://paniccia.home.cern.ch/paniccia/AMS.html